Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling.
نویسندگان
چکیده
P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein-coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS.
منابع مشابه
Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain.
P-glycoprotein, an ATP-driven drug efflux pump, is a major obstacle to the delivery of small-molecule drugs across the blood-brain barrier and into the CNS. Here we test a unique signaling-based strategy to overcome this obstacle. We used a confocal microscopy-based assay with isolated rat brain capillaries to map a signaling pathway that within minutes abolishes P-glycoprotein transport activi...
متن کاملSphingolipid signaling reduces basal P-glycoprotein activity in renal proximal tubule.
P-glycoprotein is an ATP-driven xenobiotic export pump that is highly expressed in barrier and excretory tissues, where it greatly influences drug pharmacokinetics. Recent studies in the blood-brain and spinal cord barriers identified a sphingolipid-based signaling pathway that regulates basal activity of P-glycoprotein. Here we use an established comparative renal model that permits direct mea...
متن کاملMrp1 is essential for sphingolipid signaling to p-glycoprotein in mouse blood-brain and blood-spinal cord barriers.
At the blood-brain and blood-spinal cord barriers, P-glycoprotein, an ATP-driven drug efflux pump, is a major obstacle to central nervous system (CNS) pharmacotherapy. Recently, we showed that signaling through tumor necrosis factor-α (TNF-α), sphingolipids, and sphingosine-1-phosphate receptor 1 (S1PR1) rapidly and reversibly reduced basal P-glycoprotein transport activity in the rat blood-bra...
متن کاملRapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide.
At the blood-brain barrier, P-glycoprotein, an ATP-driven drug efflux pump, selectively limits drug access to the brain parenchyma, impeding pharmacotherapy of a number of central nervous system (CNS) disorders. We previously used confocal imaging to demonstrate in isolated rat brain capillaries that endothelin-1 (ET-1), acting through an ET(B) receptor, NO synthase, and protein kinase C, rapid...
متن کاملSeizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling.
Increased expression of drug efflux transporters at the blood-brain barrier accompanies epileptic seizures and complicates therapy with antiepileptic drugs. This study is concerned with identifying mechanistic links that connect seizure activity to increased P-glycoprotein expression at the blood-brain barrier. In this regard, we tested the hypothesis that seizures increase brain extracellular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 91 4 شماره
صفحات -
تاریخ انتشار 2017